
Sujin Lee, Saghar Abdi

University of Texas at Dallas

Project2: Multi-Threading program testing report

Sujin Lee, Saghar Abdi

SE3377.005

Prof. Sridhar Alagar

20 Apr. 2024

Sujin Lee, Saghar Abdi

Time table

• Regular Testing Result Data

Testing
case

Time takes for number of threads (s)

(size) 1 4 16 32 64 128 256

P2_tc0 1.904433 0.551279 0.178505 0.109347 0.110841 0.087701 0.10978

P2_tc1 3.774598 1.063416 0.30639 0.220286 0.178694 0.152689 0.176705

P2_tc2 7.440606 2.087063 0.588301 0.367002 0.302278 0.295152 0.293574

P2_tc3 15.87356 4.20025 1.102479 0.722275 0.580216 0.568717 0.587663

P2_tc4 29.81414 8.686733 2.367861 1.401907 1.104108 1.086232 1.074762

avg 11.7614672 3.3177482 0.9087072 0.5641634 0.4552274 0.4380982 0.4484968

*tested in CS3 machine & data is average of 5 tests for each number of threads.

• Speed Up Testing Result Data

Testing
case

Speedup = t(single thread) / Time takes for number of threads (s)

(size) 1 4 16 32 64 128 256

P2_tc0 1 3.454572 10.6687936 17.4164175 17.1816656 21.715066 17.3477227

P2_tc1 1 3.54950273 12.3195861 17.1349882 21.1232498 24.7208247 21.3610141

P2_tc2 1 3.56510848 12.6476175 20.2740203 24.6151093 25.209404 25.3449079

P2_tc3 1 3.77919291 14.3980566 21.9771624 27.3580098 27.9111667 27.0113228

P2_tc4 1 3.43214693 12.5911715 21.2668487 27.0029236 27.4473078 27.740229

avg 1 3.54501502 12.9430769 20.8476254 25.8364659 26.8466458 26.2241942

*tested in CS3 machine & data is average of 5 tests for each number of threads.

Sujin Lee, Saghar Abdi

Visual Aid

• Regular Testing Result Graph

• Speed Up Testing Result Data

Sujin Lee, Saghar Abdi

Testing Result (Conclusion)

Using various test cases provided, this program records the time taken to do a specified

task on a single thread and multiple threads. These values are then calculated and

compared to evaluate the speedup and efficiency. The test was compiled and run on a

CS3 machine with 48 CPUs, and each can run two parallel threads. As we know, the

speedup is calculated by the time a single thread takes to do a task divided by the

amount of time taken to do the same task with multiple threads. The ideal expectation is

that as we increase the number of threads, we see a decrease in the time taken to

complete a task, and an increase in speedup, which is a linear speedup. However, we

need to consider other factors that could affect the speedup pattern, such as thread

management overhead and CPU limits.

Looking at the regular testing result data, it is clear that the time taken by threads to

complete a task decreases up to 32, and in some cases, 64 threads. Beyond that point,

the decrease slows down and is very insignificant. The slope of each test case in this

table gives us a clear vision of this process.

Looking at the speedup data, we can observe that as we increase the number of

threads (up to 32), there is a significant increase in the speedup. However, starting from

64 threads, we notice that there is little to no increase, and in some test cases, there’s a

decrease in the speedup. The reduction is more significant for test cases one and two,

as seen in the graphs.

From the above information, we can conclude that – for this program – as we increase

the number of threads, our expectations are met up to approximately 64 threads.

Beyond that point, we see a nonlinear increase and decrease (depending on the type of

information we are looking for). The ideal number of threads based on this program is

about 64, which may vary based on input, overhead management, and other factors

that might affect the program.

Sujin Lee, Saghar Abdi

Functional and Non-Functional Requirements

FR Description Priority

FR1
The Customized Multi Thread Program must use pthread(POSIX) to

utilize multithreading to improve performance.
1

FR2
The Customized Multi Thread Program must use mmap() to allocate

and read memory mapping to efficiently read the file
2

FR3
The Customized Multi Thread Program must handle errors correctly

and print error message to show related error to the user.
5

FR4
The Customized Multi Thread Program must calculate the hash value

of a given file using the Jenkins one-at-a-time hash algorithm.
3

FR5
The Customized Multi Thread Program must time while program is

running and print it when program ends (to compare how numThread
affects to the run time).

4

FR6
The Customized Multi Thread Program must follow the output format

provided in hash_tc# file
6

NFR1
The Customized Multi Thread Program must be accountable to the

users in order to ensure that any user who wants to run this program
can see an appropriate error message if an error occurs.

2
(FR3)

Sujin Lee, Saghar Abdi

Method definition (Function Prototype)

name parameter return type content

jenkins_on

e_at_a_tim

e_hash

Key, Len uint32_t

This function was provided with the project, and
detailed information can be found at
https://en.wikipedia.org/wiki/Jenkins_hash_func
tion.

Usage string void

This function takes a strings as a parameter
and is meant to execute an error message
when user enters wrong command to execute
the object file.

GetTime none double
This function implementation is from trat.c to
store runtime of the program, and later we will
use it to compare benefit of number of threads.

CalcHash *arg void

This function calculate hash value using
multithreading using pthread(POSIX).

Also, this function will serve as start routine
when each thread is created.

Usecase Diagram

https://en.wikipedia.org/wiki/Jenkins_hash_function
https://en.wikipedia.org/wiki/Jenkins_hash_function

